What is the maximum speed of an electron emitted from a metal surface with a threshold frequency of 5.706*10^(14) by light with a wavelength of 350nm?

In order to determine the maximum speed of an emitted electron, we must first find it's kinetic energy from the energy of an incident photon and the work function of the metal surface (the minimum energy required for an electron to escape the metal surface). These are related using the equation below. E(total energy provided by photon)=Φ+EkThe energy of a single photon can be calculated from Planck's Equation, E=hf, where E is energy, h is Planck's constant (6.6310^(-34)Js) and f is frequency. In this case we don't have the frequency of the incident, but the wavelength instead, therefore in order to obtain the frequency the equation f=c/lambda can be used, where f is frequency, c is the speed of light (3.0010^(8)m/s) and lambda is the wavelength.Then use the given values to find the energy of the photon. => f=3.0010^(8)/(35010^(-9))=8.5710^(14) Hz=> E=6.6310^(-34)8.5710^(14) = 5.6810^(-19) JThe work function, Φ, can also be calculated from the threshold frequency using Planck's equation. => Φ=6.6310^(-34)5.70610^(14)= 3.7810^(-19) JTherefore Ek(max)=E-Φ= (5.68-3.78)10^(-19) J = 1.9010^(-19) JRearranging Ek(max)=(1/2)mv2 for v, gives vmax=(2Ek(max)/m)^(1/2) = 6.4610^(5) m/s

MG
Answered by Mattea G. Physics tutor

12267 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).


Describe Newton's second law.


3 resistors, R1, R2 and R3 are attached in parallel across a 6V cell with resistances 3, 4 and 5 Ohms respectively. Calculate the current across each resistor.


Explain how an acceleration-displacement graph could be used to determine the frequency of oscillation of a metal plate.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning