What is the maximum speed of an electron emitted from a metal surface with a threshold frequency of 5.706*10^(14) by light with a wavelength of 350nm?

In order to determine the maximum speed of an emitted electron, we must first find it's kinetic energy from the energy of an incident photon and the work function of the metal surface (the minimum energy required for an electron to escape the metal surface). These are related using the equation below. E(total energy provided by photon)=Φ+EkThe energy of a single photon can be calculated from Planck's Equation, E=hf, where E is energy, h is Planck's constant (6.6310^(-34)Js) and f is frequency. In this case we don't have the frequency of the incident, but the wavelength instead, therefore in order to obtain the frequency the equation f=c/lambda can be used, where f is frequency, c is the speed of light (3.0010^(8)m/s) and lambda is the wavelength.Then use the given values to find the energy of the photon. => f=3.0010^(8)/(35010^(-9))=8.5710^(14) Hz=> E=6.6310^(-34)8.5710^(14) = 5.6810^(-19) JThe work function, Φ, can also be calculated from the threshold frequency using Planck's equation. => Φ=6.6310^(-34)5.70610^(14)= 3.7810^(-19) JTherefore Ek(max)=E-Φ= (5.68-3.78)10^(-19) J = 1.9010^(-19) JRearranging Ek(max)=(1/2)mv2 for v, gives vmax=(2Ek(max)/m)^(1/2) = 6.4610^(5) m/s

Answered by Mattea G. Physics tutor

10612 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


A car of mass m is travelling at a speed v around a circular track of radius r banked at an angle θ. (a) What is the centripetal acceleration of the car? (b) What is the normal force acting on the car? (c) If θ = 45°, r = 1 km what is the maximum speed?


A fluorescent light uses a lining to emit visible light, explain why this is necessary and how it works.


An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences