The equation of Line 1 is y=2x-2 and the equation of Line 2 is 2y-4x+5=0. Prove that these 2 lines are parallel to each other.

In order for 2 lines to be parallel, they must have the same gradient. As such, the first thing we should do is rearrange these equations in the form of y=mx+c, where m is the gradient and c is the y-intercept.Line 1 is already in the form of y=mx+c and so we can leave this for the time being. Rearranging Line 2 we get: 2y=4x-5. We can then divide both sides by 2 to get the equation y=2x-2.5.We can now see that both Line 1 and 2 have a gradient of 2, and so they must be parallel to each other.

DS
Answered by Darsh S. Maths tutor

3393 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the nth term of the sequence 5, 7, 9, 11....


Solve the equation x^2-x-56=0


Y=3x^2-2 ( Make x the ubject of the formula


Solve: sin(x) = 0.5, in the interval of 0 < x < 360 degree.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences