Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.

  1. Identify that this is a rate of change question and set up the boundary conditions of V = 5 when t = 02) Take the dt to the right side and explain to integrate both sides of the equation to 'sum over all the tiny bits of time and tiny bits of V'3) Plug in the boundary conditions as a constant will drop out, and finally put t=4 into the formula. Write answer WITH UNITS.
TW
Answered by Tommy W. Maths tutor

3730 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the function (x^4 + 2x^3 - x -2)/(x+2)


How do polar coordinate systems work?


How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning