Prove that n(n+5) + 2(n+3) is always a product of two numbers with a difference of 5.

n(n+5)+2(n+3) = n2+5n+2n+6 = n2+7n +6 = (n+6)(n+1) = (n+6) x (n+1).
The difference between (n+6) and (n+1) is 5, so this is a product of two numbers with a difference of 5.

EG
Answered by Eleanor G. Maths tutor

4447 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve a quadratic equation by factorising?


there are 11 sweets in a box four are soft centred and seven hard centred sweets two sweets are selected at random a)calculate the probability that both sweets are hard centred, b) one sweet is soft centred and one sweet is hard centred


What is Pythagoras' theorem and what can it be used to figure out?


Solve the Simultaneous equations. 3x+5y=22 4x-5y=6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning