How to factorise equations, or expand factorised equations?

Factorising x2-100: As there is no common element in x2 or 100, we know this must consist of two sets of brackets not just one. we know both brackets must contain and x, and that which ever two numbers multiply to make 100 should be equal, cancelling out any number of x's as there are none in the equation. Therefore it could not be (x+50)(x-2) as this would leave you with x2+48x -100. It could be 10 in each bracket as 100 is a square number, giving you (x+10)(x-10). If we expand this out we get x2+10x -10x - 100. The two 10x's cancel out giving us x2-100, as required!

Answered by Harleen H. Maths tutor

2684 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous equations: 7x+3y=84, 2x+2y=32


n sweets, 6 are orange, the rest are yellow. Sophie takes at random a sweet. She eats the sweet. Sophie then takes at random another sweet. She eats the sweet. The probability that Sophie eats two orange sweets is 1/3. Show that n² – n – 90 = 0


Celine has £5 to buy pens and rubbers. Pens are 18p each. Rubbers are 30p each. She says “I will buy 15 pens. Then I will buy as many rubbers as possible. With my change I will buy more pens.” How many pens and how many rubbers does she buy? [5 marks]


Factorise and solve x^2 - 8x + 15 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences