Answers>Maths>IB>Article

The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.

Arithmatic term n, Un= U1+(n-1)d. Where U1 is the first term of the sequence and d is the common difference. U5=U1+4d=6. U1=6-4d. Sum of arithmatic terms up to term n, Sn=n/2(2U1+(n-1)d). S12=12/2(2(6-4d)+(12-1)d)=45. 6(12-8d+11d)=45. 12+3d=45/6. 3d=7,5-12=-4,5. d=-4.5/3=-1,5. U1=6-4*(-1,5)=6+6=12

JS
Answered by Jasmin S. Maths tutor

9088 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A team of four is chosen from six married couples. If a husband and wife cannot both be on the team, in how many ways can the team be formed?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


How do I find the derivative of 2^x?


log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning