First to find the stationary points, you have to differentiate the equation of the curve y, to give you (dy/dx) = 10 - 4x - 6x^2After differentiating the equations, the points at which the curve is stationary is where the differential of the curve is 0. Making (dy/dx) = 0 = 10 - 4x - 6x^2, this equation could be solved by factorising the equation. So to find common factors, let's take ax^2 + bx + c = 0 as the example base equation, to find the common factors, you'll need two numbers that will give 'b' when added together and the product of 'a' and 'c' when multiplied together, so in the case of (dy/dx) = 10 - 4x - 6x^2, our two factors will be -10 and +6, therefore (dy/dx) = 10 - 10x + 6x - 6x^2, grouping like terms would make (dy/dx) = (10 + 6x)(1 - x) = 0Therefore the x co-ordinates of the equation y, are x = 1 and -5/3