A student of mass m=50kg runs an experiment. He throws a ball of mass m = 400g from a height h = 20m. What will be the speed of the ball he records just before it touches the ground?

First, we need to see what the important information in this problem is: the mass of the student is irrelevant as the problem focusses on the ball. So we now know that the important information is: m = 400g and h = 20m. We also need to recognise that the mass is not in the standard unit, so we need to transform it into kg: 400g = 0.4kg (divide by 1000 or move the point 3 steps).Now, we need to remember that the ball has potential energy at the start and that that potential energy turns into kinetic energy as it falls. The two formulas we need are: potential energy = mgh - will be maximal before it starts falling; kinetic energy = 0.5mv^2 - will be maximal (and equal to starting potential energy) when the ball reaches the ground. So, we can now calculate:potential energy = 0.4kg10m/s^220m = 80J. The kinetic energy when it reaches the ground = 80J -> v = sqrt(2*80/m) = sqrt(160/0.4) = 20m/s

Answered by Martina M. Physics tutor

1572 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Circut is arranged in a loop, with resistor (5 ohm), power source(2V), resistor (3 ohm), and another power source (3V) connected subsequently. What is the voltage on 5ohm resistor?


Hanging on a branch of a tree, a monkey sees a hunter aiming a gun at him. The monkey lets go of the branch at the exact same time the bullet is fired. Explain why the bullet hits the monkey.


A rock fragment weighing 50N is displaced from the top of a cliff and falls 0.12 km to the ground. Calculate the kinetic energy (in J) of the rock just before it hits the ground. Assume air resistance is negligible.


a )John heats up 2kg of water from 20 degrees c to 80 degrees c. How much energy input did this require? b )When John weighs the water at the end, he has less than he started with. Why might this be? c) What hazards are in this experiment?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences