A student of mass m=50kg runs an experiment. He throws a ball of mass m = 400g from a height h = 20m. What will be the speed of the ball he records just before it touches the ground?

First, we need to see what the important information in this problem is: the mass of the student is irrelevant as the problem focusses on the ball. So we now know that the important information is: m = 400g and h = 20m. We also need to recognise that the mass is not in the standard unit, so we need to transform it into kg: 400g = 0.4kg (divide by 1000 or move the point 3 steps).Now, we need to remember that the ball has potential energy at the start and that that potential energy turns into kinetic energy as it falls. The two formulas we need are: potential energy = mgh - will be maximal before it starts falling; kinetic energy = 0.5mv^2 - will be maximal (and equal to starting potential energy) when the ball reaches the ground. So, we can now calculate:potential energy = 0.4kg10m/s^220m = 80J. The kinetic energy when it reaches the ground = 80J -> v = sqrt(2*80/m) = sqrt(160/0.4) = 20m/s

Answered by Martina M. Physics tutor

1478 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

In the photoelectric effect, why is the kinetic energy of the electrons independent of the intensity of light?


If a cricket ball of mass 500g is thrown upwards from the ground with an initial velocity of 20 m/s, how high will the ball reach?


The Alternating Current Flowing through the Primary Coil of the Transformer Creates an Alternating Current in the Secondary coil. Explain how!


Compare the advantages and disadvantages of the two methods of generating electricity (figure 1 in answer):


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences