A student of mass m=50kg runs an experiment. He throws a ball of mass m = 400g from a height h = 20m. What will be the speed of the ball he records just before it touches the ground?

First, we need to see what the important information in this problem is: the mass of the student is irrelevant as the problem focusses on the ball. So we now know that the important information is: m = 400g and h = 20m. We also need to recognise that the mass is not in the standard unit, so we need to transform it into kg: 400g = 0.4kg (divide by 1000 or move the point 3 steps).Now, we need to remember that the ball has potential energy at the start and that that potential energy turns into kinetic energy as it falls. The two formulas we need are: potential energy = mgh - will be maximal before it starts falling; kinetic energy = 0.5mv^2 - will be maximal (and equal to starting potential energy) when the ball reaches the ground. So, we can now calculate:potential energy = 0.4kg10m/s^220m = 80J. The kinetic energy when it reaches the ground = 80J -> v = sqrt(2*80/m) = sqrt(160/0.4) = 20m/s

MM
Answered by Martina M. Physics tutor

2037 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A person swims from a depth of 0.50 m to a depth of 1.70 m below the surface of the sea. Density of the sea water = 1030 kg/m^3. Gravitational field strength = 9.8 N/kg. Calculate the increase in pressure on the swimmer. Give the unit.


A kettle is found to output 65J when its input energy is 100J. What is the efficiency of the kettle, and what happens to the rest of the energy?


Name two properties that both microwave and infrared has.


Describe the kinetic model composition of a solid


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning