Solve (x^2 - 4)/(2x+4)

The common mistake the students make is to simplify the fraction before factorising numerator and denominator. Here, we need to see that the numerator: x^2 - 4 is a difference between squares, i.e. A^2 - B^2 = (A+B)(A-B). Having recognised that, x^2-4 = (x+2)(x-2) and this can be proved by doing the inverse multiplication back to the original question. Similarly (but easier), the denominator: 2x+4 -> the two terms have a 2 in common, so it can be rewritten: 2(x+2)At this point, and ONLY at this point, this can be simplified by recognising that the factor x+2 is present both at numerator and at denominator.So the final result is: (x-2)/2Many students attempt to cancel out terms before factorising, so it is important to show that this is not the right procedure.

Answered by Martina M. Maths tutor

2976 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the range of the function y = x^2?


If a student wishes to have a ratio of 2:7 red pens to yellow pens in their pencil case: a) if they have 50 pens total what is the maximum amount they can carry with them b) if they have 18 red and 31 yellow what is the maximum amount they can carry


5 tins of soup have a total weight of 1750 grams. 4 tins of soup and 3 packets of soup have a total weight of 1490 grams. Work out the total weight of 3 tins of soup and 2 packets of soup.


Using factorization, solve x^2 + 10x + 24 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences