Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.

The function is defined parametrically so we usually approach these questions using chain rule.Recall that: dy/dθ * dθ/dx = dy/dx So we will need to differentiate each expression individually then multiply them together.Differentiating the first with respect to θ we get:(1)   dy/dθ = 2cos(θ) ,then the expression for x gives us: dx/dθ = -3sin(θ) , We can then remember that differentials behave as fractions so we can flip both sides to get:(2)  dθ/dx = -1/3sin(θ) . Remembering chain rule we can multiply (1)*(2) to get dy/dx: dy/dθ * dθ/dx = 2cos(θ) * -1/3sin(θ) --> dy/dx = -2cos(θ)/3sin(θ)

Answered by Jacob C. Maths tutor

4834 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.


Solve the equation cos2x - 5cosx = 2


How do I differentiate and integrate powers of x?


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences