How do you differentiate 2 to the power x?

let y=2x                 {take natural logs of both sides}

ln y = ln(2x)          {use rules of logs to change right hand side}

lny = xln2              {differentiate implicitly}

1/y dy/dx = ln2    {make dy/dx the subject}

dy/ dx       = y ln2  {write y in terms of x)

dy/dx = 2x . ln2

Therefore derivative of 2 to the power of x is 2x . ln2

 

This can be generalised as the derivative of a to the power of x (where a is a constant, a>0)  is  ax lna

JR
Answered by Jack R. Maths tutor

156875 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 2x^3 - xy^2 - 4


Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


Integrate 2x/(x^2+3) using the substitution u=x^2+3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning