How do you differentiate 2 to the power x?

let y=2x                 {take natural logs of both sides}

ln y = ln(2x)          {use rules of logs to change right hand side}

lny = xln2              {differentiate implicitly}

1/y dy/dx = ln2    {make dy/dx the subject}

dy/ dx       = y ln2  {write y in terms of x)

dy/dx = 2x . ln2

Therefore derivative of 2 to the power of x is 2x . ln2

 

This can be generalised as the derivative of a to the power of x (where a is a constant, a>0)  is  ax lna

Answered by Jack R. Maths tutor

144928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

SOLVE THE FOLLOWING SIMULTANEOUS EQUATIONS: 5x^2 + 3x - 3y = 4, -4x - 6y + 5x^2 = -7


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


Differentiate y = 4ln(x)x^2


How do you integrate by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences