The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c

Firstly you should work out the first derivative of the equation y= After differentiating the equation, sub the x value of the point P into the first derivative. This should give you the gradient of the equation. After getting the gradient of the tangent, you could use the y and x value of point P and sub it into the equation of y=mx+c to work out the y intercept (c). This would give you the answer.

Answered by Mohammed R. Maths tutor

2874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees


How to differentiate using the chain rule


Differentiate 5x^2+5y^2-6xy=13 to find dy/dx


A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences