The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c

Firstly you should work out the first derivative of the equation y= After differentiating the equation, sub the x value of the point P into the first derivative. This should give you the gradient of the equation. After getting the gradient of the tangent, you could use the y and x value of point P and sub it into the equation of y=mx+c to work out the y intercept (c). This would give you the answer.

MR
Answered by Mohammed R. Maths tutor

3513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve equations like 3sin^2(x) - 2cos(x) = 2


Find the stationary points and their nature of the curve y = 3x^3 - 7x + 2x^-1


What is the chain rule and how is it used?


Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning