Find the derivative of the following function: f(x) = x(x^3 + 2x)

f(x) becomes f'(x)1) First multiply out the brackets (by adding the indices) = x^4 + 2x^22) Then differentiate this. The indices moves to the front and multiplied by the number before the x. The indices is then decreased by 1.3) x^ 4 becomes 4x^34) 2x^2 becomes 4x^1... anything to the power of 1 is just itself so this becomes just 4x5) The final answer is f'(x) = 4x^3 + 4x

SS
Answered by Shamailla S. Maths tutor

2940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate parametrically y=3t+4 and x=2t^2 +3t-5


Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2


a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning