A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.

At stationary point the derivative of y with respect to x equals zero. Find dy/dx. dy/dx = 2x - 6x2.Set dy/dx = 0 ,giving 2x - 6x2 = 0. We can rearrange this to x(1-3x) = 0 and solve the equation for x. This results in x1 = 0 and x2 = 1/3.Substitute these x values into the original equation and we get the corresponding y values for the coordinates. y1 = 3 + (0)2 - 2(0)3 = 3. y2 = 3 +(1/3)2 - 2(1/3)3 = 82/27. Giving the coordinates for the two stationary points as p1= (0,3) and p2 = (1/3,82/27).

Answered by Thomas C. Maths tutor

3889 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


How would you show that a vector is normal to a plane in 3D space?


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences