A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.

At stationary point the derivative of y with respect to x equals zero. Find dy/dx. dy/dx = 2x - 6x2.Set dy/dx = 0 ,giving 2x - 6x2 = 0. We can rearrange this to x(1-3x) = 0 and solve the equation for x. This results in x1 = 0 and x2 = 1/3.Substitute these x values into the original equation and we get the corresponding y values for the coordinates. y1 = 3 + (0)2 - 2(0)3 = 3. y2 = 3 +(1/3)2 - 2(1/3)3 = 82/27. Giving the coordinates for the two stationary points as p1= (0,3) and p2 = (1/3,82/27).

Answered by Thomas C. Maths tutor

3675 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x+3y+3=0. It is parallel to a line with equation y=mx+7. What is m?


Solve the equation sec^2(A) = 3 - tan(A), for 0<= A <= 360 (degrees)


Find the maximum point of the curve from its given equation: [...]


The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences