Differentiate y = 4ln(x)x^2

So we want to differentiate y =  4x2ln(x) with respect to y. For this we need to use the product rule.

The product rule is D {f(x)g(x)} = f(x)g'(x) + g'(x)f(x)

We can therefore make f(x) = 4xand g(x) = ln (x)

f'(x) = 8x nad g'(x) = 1/x

Therefore dy/dx = 8xln(x) + 4x2/x which can be simpliefied to 8xln(x) + 4x, which can be further simplified to get the answer:

4x(2ln(x) + 1)

Answered by Beth P. Maths tutor

5615 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that tan(x) + cot(x) = 2cosec(2x)


How do I use simple integration?


Evaluate the integral ∫(sin3x)(cos3x)dx (C4 Integration)


What is the difference between a scalar product and a vector product, and how do I know which one to use in questions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences