Differentiate y = 4ln(x)x^2

So we want to differentiate y =  4x2ln(x) with respect to y. For this we need to use the product rule.

The product rule is D {f(x)g(x)} = f(x)g'(x) + g'(x)f(x)

We can therefore make f(x) = 4xand g(x) = ln (x)

f'(x) = 8x nad g'(x) = 1/x

Therefore dy/dx = 8xln(x) + 4x2/x which can be simpliefied to 8xln(x) + 4x, which can be further simplified to get the answer:

4x(2ln(x) + 1)

Answered by Beth P. Maths tutor

5870 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


A general function f(x) has the property f(-x)=-f(x). State a trigonometric function with this property and explain using the Maclaurin series expansion for this function why this property holds. Write down the integral in the limits -q to q of f(x) wrt x


Integrate f(x)=lnx


Integrate 5sinxcosx + 5cosx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences