Differentiate y = 4ln(x)x^2

So we want to differentiate y =  4x2ln(x) with respect to y. For this we need to use the product rule.

The product rule is D {f(x)g(x)} = f(x)g'(x) + g'(x)f(x)

We can therefore make f(x) = 4xand g(x) = ln (x)

f'(x) = 8x nad g'(x) = 1/x

Therefore dy/dx = 8xln(x) + 4x2/x which can be simpliefied to 8xln(x) + 4x, which can be further simplified to get the answer:

4x(2ln(x) + 1)

Answered by Beth P. Maths tutor

5748 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points


What does it mean for a function to have one to one mapping?


Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


How do you integrate the natural logarithm?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences