What's the gradient of the curve y=x^3+2x^2 at the point where x=2?

Gradient is change in y divided change in x.As the change shrinks to effectively nothing (as we want to gradient at a point, not between points), we use dy/dx (the derivative of y with respect to x), to work out the gradient at any point.For each term, the coefficient of x is multiplied by the power, and the power is subtracted by one.dy/dx=3x^2+4xThis is a general equation for the gradient at any point.We then substitute in x=2 to work out the gradient at our desired point.Gradient = 3*(2^2) + 42 = 34 + 4*2 = 12 + 8 = 20

ZI
Answered by Zachary I. Maths tutor

7460 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).


Solve x^2 > |5x - 6|


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


A circle with center C has equation x^2 + y^2 + 8x - 12y = 12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning