What's the gradient of the curve y=x^3+2x^2 at the point where x=2?

Gradient is change in y divided change in x.As the change shrinks to effectively nothing (as we want to gradient at a point, not between points), we use dy/dx (the derivative of y with respect to x), to work out the gradient at any point.For each term, the coefficient of x is multiplied by the power, and the power is subtracted by one.dy/dx=3x^2+4xThis is a general equation for the gradient at any point.We then substitute in x=2 to work out the gradient at our desired point.Gradient = 3*(2^2) + 42 = 34 + 4*2 = 12 + 8 = 20

Answered by Zachary I. Maths tutor

6063 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=12+3x^4. Find dy/dx.


Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


How do you use the chain rule?


Co-ordinate Geometry A-level: The equation of a circle is x^2+y^2+6x-2y-10=0, find the centre and radius of the circle, the co-ordinates of point(s) where y=2x-3 meets the circle and hence state what we can deduce about the relationship between them.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences