(a) Use integration by parts to find ∫ x sin(3x) dx

The question asks for integration by parts. Therefore we need to differentiate one variable and integrate the other. First we need to decide which variable is going to be which. Algebra should always be differentiated instead of trigonometric functions if possible. Therefore take:u=x, dv/dx = sin(3x). Differentiate the first term and integrate the second term to give: du/dx =1, and v = -1/3 cos(3x) . Now apply the formulae: uv - ∫ (du/dx * v) dx . This will give us: -x/3 cos(3x) - - 1/3( ∫ cos(3x) dx ) . The answer will then be: -x/3 cos(3x) + 1/9 sin(3x) + c

GA
Answered by George A. Maths tutor

8284 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.


How do I choose which term do I differentiate/integrate when I am integrating by parts


A curve has equation y = 20x −x^2 −2x^3 . Find its stationary point(s).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning