Sketch the function (x^4 + 2x^3 - x -2)/(x+2)

First of all determine the range of the function by looking at its denominator. The function is defined at each point except x=-2 Now to find the zeros of the function first factorise it and equate it to zero y=[( x3-1)(x+2)]/(x+2)=0 and notice how we can get rid of the denominator. Thus the only zero is at x=1. Now we realised that for every x different from -2 the function behaves exactly like (x3-1) which we sketch like a positive cubic shifted of 1 unit downwards. Leaving -2 hollow we conclude the sketch.

Answered by Matteo D. Maths tutor

2460 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I draw and sketch an equation?


Time, T, is measured in tenths of a second with respect to distance x, is given by T(x)= 5(36+(x^2))^(1/2)+4(20-x). Find the value of x which minimises the time taken, hence calculate the minimum time.


How could I sketch a graph of y=2x^3-3x^2?


2 log(x + a) = log(16a^6) where a is a positive constant. How do I find x in terms of a?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences