Sketch the function (x^4 + 2x^3 - x -2)/(x+2)

First of all determine the range of the function by looking at its denominator. The function is defined at each point except x=-2 Now to find the zeros of the function first factorise it and equate it to zero y=[( x3-1)(x+2)]/(x+2)=0 and notice how we can get rid of the denominator. Thus the only zero is at x=1. Now we realised that for every x different from -2 the function behaves exactly like (x3-1) which we sketch like a positive cubic shifted of 1 unit downwards. Leaving -2 hollow we conclude the sketch.

MD
Answered by Matteo D. Maths tutor

3110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 5^(2x) - 12(5^x) + 35 = 0


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


integral of (tan(x))dx using the substitution u = cos(x)


How do I remember the common values of cosx, sinx and tanx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning