Solve the inequality x^2 < -8x + 9

Notice that the inequality may be rearranged to give the quadratic x^2 + 8x - 9 < 0.Factorise the quadratic to give (x-1)(x+9) < 0.Treating the expression as an equality, recall that if the product of two values is equal to zero then at least one of those values must be zero. Hence notice that the roots to the equation are 1 and -9. We are only interested in the values of the quadratic below zero, check if the parts of the quadratic below x=0 are converging or diverging.Since the two ends of the line are converging the solution must be -9 < x < 1.It may be useful to attempt to solve the question graphically as well as numerically.

Answered by Isaac S. Maths tutor

3398 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: x^2 + y^2 = 5 and y = 3x + 1


3/5 of a number is 162. what is the number?


Bob earns £7.70 an hour, and he works 30 hours per week. If Bob has 28 days of unpaid holidays to take, how much does he earn in a year? Also will he be taxed? (Bob will be taxed if he earns over £10000 in one year)


How do you find the length of a side of a right-angled triangle given the angle and the hypotenuse?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences