The speed of water moving through a turbine is 2.5 m/s. Show that the mass of water passing through an area of 500 metres squared in one second is about 1 x 10^6 kg (density of sea water = 1030 kg/m^3)

This is a past exam question from an A level paper for OCR Physics B.We know that in one second, a volume of water (V), travelling at 2.5 m/s is passing through an area of 500 metres squared in one second. This volume can be represented as a column, with the cross section (area at the front) equal to the area the water is passing through, so 500 metres squared. Since we know that v=s/t, we can rearrange this to get s=vt meaning that in one second, all the water molecules travel v.t metres of 2.5 x 1 = 2.5 metres. This gives us our bottom side for our column, giving us a total volume of V=Al = 500 x 2.5 = 1250 metres cubed.So we now have the volume (V) and the density (ρ) but want to find the mass (m) which are all linked in the equation ρ=m/V which when rearranged gives m=ρV giving us an answer of m=1030 x 1250 = 1,287,500 kg which we can say is roughly equal to 1 x 10^6 kg

CH
Answered by Catherine H. Physics tutor

5643 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two balls of mass 3kg and 7 kg respectively move towards one another with speeds 5ms^-1 and 2ms^-1 respectively on a smooth table. If they collide and join, what velocity do they move off with?


A cricketer throws a ball vertically upwards so that the ball leaves his hands at a speed of 25 m/s. Calculate the maximum height reached by the ball, the time taken to reach max. height, and the speed of the ball when it is at 50% max. height.


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


Do the SUVAT equations work for acceleration that changes with time?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning