The speed of water moving through a turbine is 2.5 m/s. Show that the mass of water passing through an area of 500 metres squared in one second is about 1 x 10^6 kg (density of sea water = 1030 kg/m^3)

This is a past exam question from an A level paper for OCR Physics B.We know that in one second, a volume of water (V), travelling at 2.5 m/s is passing through an area of 500 metres squared in one second. This volume can be represented as a column, with the cross section (area at the front) equal to the area the water is passing through, so 500 metres squared. Since we know that v=s/t, we can rearrange this to get s=vt meaning that in one second, all the water molecules travel v.t metres of 2.5 x 1 = 2.5 metres. This gives us our bottom side for our column, giving us a total volume of V=Al = 500 x 2.5 = 1250 metres cubed.So we now have the volume (V) and the density (ρ) but want to find the mass (m) which are all linked in the equation ρ=m/V which when rearranged gives m=ρV giving us an answer of m=1030 x 1250 = 1,287,500 kg which we can say is roughly equal to 1 x 10^6 kg

Answered by Catherine H. Physics tutor

4972 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the Strong Nuclear Force?


What determines the acoustic impedance of a material and why is it useful in understanding ultrasound imaging?


A uniform plank of wood of mass 32 kg and length 4.0 m is used to cross a ditch. In the ditch is a rock, which is used to support the plank horizontally 0.80 m from one end. The other end is supported by the bank. Calculate the rock's supporting force.


What is the derivative of distance with respect to time.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences