The speed of water moving through a turbine is 2.5 m/s. Show that the mass of water passing through an area of 500 metres squared in one second is about 1 x 10^6 kg (density of sea water = 1030 kg/m^3)

This is a past exam question from an A level paper for OCR Physics B.We know that in one second, a volume of water (V), travelling at 2.5 m/s is passing through an area of 500 metres squared in one second. This volume can be represented as a column, with the cross section (area at the front) equal to the area the water is passing through, so 500 metres squared. Since we know that v=s/t, we can rearrange this to get s=vt meaning that in one second, all the water molecules travel v.t metres of 2.5 x 1 = 2.5 metres. This gives us our bottom side for our column, giving us a total volume of V=Al = 500 x 2.5 = 1250 metres cubed.So we now have the volume (V) and the density (ρ) but want to find the mass (m) which are all linked in the equation ρ=m/V which when rearranged gives m=ρV giving us an answer of m=1030 x 1250 = 1,287,500 kg which we can say is roughly equal to 1 x 10^6 kg

Answered by Catherine H. Physics tutor

4992 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

On the line of centres between the Earth and the Moon, there is a point where the net gravitational force is zero. Given that the distance between the two is 385,000 km, and that the Earth has a mass 81x that of the Moon, how far is this point from Earth?


The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.


A cup of tea contains 175 g of water at a temperature of 85.0 °C. Milk at a temperature of 4.5 °C is added to the tea and the temperature of the mixture becomes 74.0 °C. What is the internal energy lost by the water? What is the mass of the milk?


Derive an expression for the centripetal acceleration of a body in uniform circular motion.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences