Find the stationary points of the equation. f(x)=3x^2+4x.

Stationary points are points on the graph where the gradient is equal to 0.The gradient for any given point can be calculated by differentiating the original equation.f(x)=3x^2+4xDifferentiating gives:=> f’(x)=6x+4Stationary points are where f’(x)=0=>6x+4=0=> 6x=-4=>x=-2/3To find y value input the x value into the original equation.f(-2/3)=3(-2/3)^2+4(-2/3)=> 4/3-8/3=> -4/3Answer: stationary point is at (-2/3,-4/3)

Answered by Ethan W. Maths tutor

3725 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to integrate and differentiate ((3/x^2)+4x^5+3)


A curve C has the following equation: x^3 + 3y - 4(x^3)*(y^3) a) Show that (1,1) lies on C b) Find dy/dx


Differentiate y=(sin(x))^(2)


What are stationary points and how do I find them?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences