Find the stationary points of the equation. f(x)=3x^2+4x.

Stationary points are points on the graph where the gradient is equal to 0.The gradient for any given point can be calculated by differentiating the original equation.f(x)=3x^2+4xDifferentiating gives:=> f’(x)=6x+4Stationary points are where f’(x)=0=>6x+4=0=> 6x=-4=>x=-2/3To find y value input the x value into the original equation.f(-2/3)=3(-2/3)^2+4(-2/3)=> 4/3-8/3=> -4/3Answer: stationary point is at (-2/3,-4/3)

Answered by Ethan W. Maths tutor

3836 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


Find the area under the curve of y=x^2 between the values of x as 1 and 3


f(x)=6/x^2+2x i) Find f'(x) ii) Find f"(x)


I'm confused about differentiation and integration, could you explain these to me?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences