How do you find the cube root of z = 1 + i?

Firstly we express z in polar form:
 
z = Reiθ
 
where |z| = (Re2 + Im2)0.5 = (12 + 12)0.5 = 20.5
 
θ = arg z = tan-1(Im/Re) = tan-1(1/1) = π/4
 
Therefore z = (20.5)eiπ/4
 
We can add on any multiple of 2π to the argument of z without affecting the value of the complex number:
 
z = (20.5)ei(π/4 + 2πn)
 
where n is an integer
 
We then take cube roots of both sides (not forgetting to cube root the modulus R as well as the exponent):
 
z1/3 = (21/6)ei(π/12 + 2πn/3) = (21/6)ei(π + 8πn)/12
 
Because we are calculating the cube root, we expect three solutions. To find these three roots, we substitute in three consecutive integers into n. We will choose n = 0, 1, 2.
 
Solution 1 (with n=0): z1/3 = (21/6)ei(π/12)
Solution 2 (with n=1): z1/3 = (21/6)ei(3π/4)
Solution 3 (with n=2): z1/3 = (21/6)ei(17π/12)
 
We can convert these back into Cartesian form using:
 
z = R
(cosθ + i sinθ)
 
We find that:
 
Solution 1: z1/3 =(21/6)
(cos(π/12) + i sin(π/12)) = 1.08 + 0.291i
Solution 2: z1/3 = (21/6)
(cos(3π/4) + i sin(3π/4)) = -0.794 +0.794i
Solution 3: z1/3 = (21/6)*(cos(17π/12) + i sin(17π/12)) = -0.291-1.084i

AE
Answered by Aldwyn E. Further Mathematics tutor

17465 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using a Taylor's series or otherwise; derive Euler's Formula


How to use the integrating factor?


Prove by induction that 6^n + 4 is divisible by 5 for all integers n >= 1


The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences