How to solve the simultaneous equations 3x+2y=7 and 5x+y=14

Firstly we rearrange one of these equations so that we have y on one side of the equation on its own. Let's do this with the second equation.

So from 5x+y=14, we can minus 5x from both sides to get:

y=14-5x

Then we can substitute this expression for y into our first equation that is 3x+2y=7

So we have 3x+2(14-5x)=7

Then we expand the bracket: 

3x+(2)(14)+(2)(-5x)=7

By simplifying this equation we get:

3x+28-10x=7

And simplifying further gives:

7x=21

By dividing both sides by 7, we find that x=3.

We substitute this value for x into either of our original equations to find the value of y.

3(3)+2y=7

So 2y=7-9

And therefore y=-1.

Finally we can check our solutions by substituting x=3 and y=-1 into the other original equation.

Therefore the solutions are x=3 and y=-1.

Answered by Imogen B. Maths tutor

8197 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Ms Henderson has two jars of sweets. The jars contain the same number of sweets in total. 25% of the sweets in Jar A are mint. Two fifths of the sweets in Jar B are mint. There are 10 mint sweets in Jar A, how many mint sweets are there in Jar B?


Factorise: y = x^2 + 5x + 6


Expand and simplify (x+12)(x-3)


Prove algebraically that the straight line with equation x = 2y + 5 is a tangent to the circle with equation x^(2) + y^(2) = 5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences