Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


Answered by Sheela K. Maths tutor

2678 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the value of the integral of e^x from x = 1 to x = 2?


Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


Integrate the function (3x+4)^2 using methods of expansion and substitution


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences