Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


Answered by Sheela K. Maths tutor

2612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 4/x^2


Express (x+1)/2x + (2x+3)/(x+1) as one term


The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors


A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences