Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


SK
Answered by Sheela K. Maths tutor

3400 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation 3x^4/3-16y^3/4=32. By differentiating implicitly find dy/dx in terms of x and y. Hence find the gradient of the curve at the point (8,1).


A circle with center C has equation x^2 + y^2 + 8x - 12y = 12


Express 4sinx-cos(pi/2 - x) as a single trignometric function


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning