An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?

F = qv x B = qvB sin(O). q is the electrons charge = 1.6x10-19 C. v is the electrons speed = 2x105 ms-1 . B is the magnetic field strength = 0.5 T. O is the angle between the electrons velocity vector and the magnetic field vector. Velocity is perpendicular to field so O = 90 degrees, sin(90)=1 therefore: F=qvB. Plugging the values into the equation we have :F= 1.6x10-19 x 2x105 x 0.5 Cms-1 T Therefore F=1.6x10-14 N

Answered by Angus B. Physics tutor

1473 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An electron falling from one energy level to another emits a photon of wavelength 550nm. What is the difference between the two energy levels?


A phone is knocked off a table 800cm of the ground. If the phone is 650g a) what is the gravational potential of the phone? b)what speed will the phone hit the floor at? c)How long will it take for the phone to hit the floor?


A ball is thrown at speed u = 10.0 m/s at an angle of 30.0 degrees to the ground at height, s = 0. How far does the ball travel horizontally from its starting position? (Ignore air resistance and taking g = 9.81 m/s^2)


A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences