An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?

F = qv x B = qvB sin(O). q is the electrons charge = 1.6x10-19 C. v is the electrons speed = 2x105 ms-1 . B is the magnetic field strength = 0.5 T. O is the angle between the electrons velocity vector and the magnetic field vector. Velocity is perpendicular to field so O = 90 degrees, sin(90)=1 therefore: F=qvB. Plugging the values into the equation we have :F= 1.6x10-19 x 2x105 x 0.5 Cms-1 T Therefore F=1.6x10-14 N

AB
Answered by Angus B. Physics tutor

2201 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A student is measuring the acceleration due to gravity, g. They drop a piece of card from rest, from a vertical height of 0.75m above a light gate. The light gate measures the card's speed as it passes to be 3.84 m/s. Calculate an estimate for g.


How to solve horizontally-launched projectile motion problems using equations of motion?


A car undergoes uniform acceleration from a starting velocity of 10ms^-1 to 20ms^-1 in 10s. Assuming the car's mass is 2000kg, calculate the net force in the direction of the acceleration.


Rutherford’s alpha particle scattering experiments gave what evidence about an atom?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning