Differentiation: How to use the chain rule

If y is a function of u, which itself is a function of x, then 

dy/dx=(dy/du) x (du/dx)

Differentiate the outer function and multiply by the derivative of the inner function.  

To illustrate this rule, look at the example below:

y=(2x+3)10

in which y=u10 and u=2x+3

Now,

dy/du=10u9=10(2x+3)9

du/dx=2

The chain rule then gives

dy/dx=(dy/du) x (du/dx) = 10(2x+3)9(2) = 20(2x+3)9

 

Answered by Nicolas H. Maths tutor

4847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


What are complex numbers?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences