Integrate cos(4x)+16x^3 with respect to x

This is a simple integration, integrating each individual term with respect to x.For the cos(4x), you should use 'integration by substitution' as it is a function of a function.cos(4x) = cos(u) and u = 4x where dx/du = 4, so dx = (1/4)duso we are now integrating: (1/4)cos(u) duthe 1/4 is a constant so can be taken infront---> integrates to sin(u)The integration of cos(u) is sin(u), using the memorised circle that can be used below:Down is differentiation, up is integration sinxcosx -sinx-cosx (then back to sinx and repeat)so (sin(u))/4and u = 4x so answer is sin(4x)/4Integrating the second value, by adding a power then dividing by the new power:16x^3 becomes (16x^4)/4 = 4x^4So finally, the solution is:sin(4x)/4+ 4x^4+Constant

Answered by Aadil C. Maths tutor

3107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


A curve has the equation y = 4x^3 . Differentiate with respect to y.


(C3) Show that 4csc^2(x) - cot^2(x) = k can be expressed as sec^2(x) = (k-1)/(k-4) where k != 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences