How do you integrate by parts?

This is one of the trickier methods of integration, and it requires some practise. The basic idea is to split a function which would be difficult to integrate into two parts. Differentiating one part and integrating the other will then lead to a function which is much easier to integrate.

The formula is that the integral of u dv = uv - the integral of v du. It is best demonstrated with an example:

Let's integrate f(x) = xcos(x)

We can see that x will disppear if we differentiate it, so let's set x = u and cos(x) = dv.

Differentiating u and integrating dv then gives du = 1 and v = sin(x)

Now we substitute these into the formula: xsin(x) - integral of sin(x)

Sin(x) is easy to integrate, it is just -cos(x). Now we have our answer! The integral of xcos(x) = xsin(x) + cos(x) + c, where c is our unknown (and always necessary!) constant of integration.

Answered by Harry M. Maths tutor

4639 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


What is the signed area between the curve y = x^2 - 4 and the x-axis?


Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


What is the differential of (14x^3-3x^2)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences