A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?

For the first part, we consult the formula c=fλ. This tells us that wavelength is inversely proportional to frequency.. ie as one increases the other decreases. This means the lowest(fundamental) frequency goes with the longest wavelength. If you consult a diagram of a vibrating string, you'll see that the greatest wavelength is equal to twice the length of the string.(This is because there must be a node at each end, and is best shown with diagrams).So the wavelength we are looking for is 1.6x2= 3.2m. Since this is a sound wave c=340m/s. All our numbers are in the correct units, so we may proceed, using f=cλ. The answer is f=106.25Hz

Answered by Monique K. Physics tutor

4935 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Bernard says that a mass executing uniform circular motion is not accelerating as it's speed is not changing. Which parts of his statement are correct and which are false. For those which are false state why they are and give the correct version.


A truck with mass 1200kg is moving at 8m/s when it collides head-on with a stationary car of mass 800kg. As they collide, the vehicles move together with the same velocity, v. Calculate this velocity.


Can you explain the Work-Energy principle and how you can apply it in a simple situation such as a box sliding down a rough slope?


What is the optimum angle to throw a snowball for maximum horizontal displacement? (Ignore air resistance, assume the snowball is thrown level with the ground. The angle is measured from the ground up)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences