Find dy/dx where y=e^(4xtanx)

Here, we must apply both chain and product rules. The chain rule can be used to find the derivative of a function in the form ef(x), like this one. However it is useful to know that this will result in the following: f'(x)ef(x)... in other words the solution is always the derivative of the power times the initial equation. Knowing this can save a lot of time in the exam- it appears a lot.Now, our only issue is finding the derivative of 4xtanx... this requires the product rule(the derivative of a product function uv= vdu+udv). In this example u=4x and v=tanx. Now du=4 and dv=sec2x. Slotting these into the above formula we get: 4tanx+4xsec2x. All that is left is to bring together these two parts to get: d(e4xtanx)/dx= (4tanx+4xsec2x)e4xtanx.

Answered by Monique K. Maths tutor

6634 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C1 June 2014 Q)4 - https://pmt.physicsandmathstutor.com/download/Maths/A-level/C1/Papers-Edexcel/June%202014%20QP%20-%20C1%20Edexcel.pdf


Differentiate y=3xe^{3x^2}+2x


Expand (1+0.5x)^4, simplifying the coefficients.


Use integration by parts to find the integral of x sin(3x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences