Prove by induction that the nth triangle number is given by n(n+1)/2

base case: (1 x 2)/2 = 1 as required inductive step: assuming statement holds for n=k, the (k+1)th triangle number is given by k(k+1)/2 + (k+1) by definition=(k^2+3k+2)/2=(k+1)(k+2)/2=(k+1)((k+1)+1)/2result follows by induction

CB
Answered by Christopher B. Maths tutor

3740 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)


Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x


integration by parts: x^-2lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning