Prove by induction that the nth triangle number is given by n(n+1)/2

base case: (1 x 2)/2 = 1 as required inductive step: assuming statement holds for n=k, the (k+1)th triangle number is given by k(k+1)/2 + (k+1) by definition=(k^2+3k+2)/2=(k+1)(k+2)/2=(k+1)((k+1)+1)/2result follows by induction

CB
Answered by Christopher B. Maths tutor

3736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I sketch the graph y = (x^2 + 4*x + 2)/(3*x + 1)


Factorise completely x-4x^3


Differentiate the function y = (x^2)/(3x-1) with respect to x.


Solve the simultaneous equations y + 4x + 1 = 0 and y^2 + 5x^2 + 2x = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning