Differentiate y=x/sin(x)

This equation has one function of x divided by another function of x, we therefore have to use the quotient rule and is written in the form f(x)/g(x). 

The quotient rule is therefore

f'(x)g(x)-g'(x)f(x)/g2(x)

The first step would be to differentiate f(x) and g(x). 

f'(x)=1 g'(x)=cos(x)

The numerator of this fraction would therefore be 

1*sin(x)-xcos(x) =sin(x)-xcos(x)

To calculate the denominator you simply square g(x)

g2(x)= sin2(x)

So the answer would be sin(x)-xcos(x)/sin2(x)

RF
Answered by Rowan F. Maths tutor

25004 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


What is the value of the integral of e^x from x = 1 to x = 2?


Find the stationary points and their nature of the curve y = 3x^3 - 7x + 2x^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning