2HCl (aq)+CaCO3 (s)->H20(l)+CaCl2(aq)+CO2(g). If using 40cm^3 of 2.5mol.dm^-3 Hcl and 5.67g of CaCO3, determine the limiting reagent and how much CO2(g) could be theoretically produced by this reaction.

First, we have to convert the starting measurements for the HCl and CaCO3 content into moles so we can compare the ratios to the formula. 40cm^3=0.04dm^30.04dm^32.5mol.dm^-3=0.1 moles of HClmass/molar mass= moles5.67g/100=0.0567 moles of CaCO30.1 moles of HCl will fully react to 0.05 moles of CaCO30.0567>0.05 so HCl is the limiting reagent 0.1 moles of HCl fully reacting will produce 0.05 moles of CO2 as the coefficient of HCl is 2 and the coefficient of CO2 is 1.0.05 moles CO244 g/mol=2.2 grams of CO2(g)

Answered by Daniel R. Chemistry tutor

1950 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

In the addition of hydrogen bromide to propene, consider which of the two possible products, 1-bromopropane and 2-bromopropane, will be the major product and why.


Define the an acid/base according to the Bronsted-Lowry and Lewis theories. Support with equation to illustrate an acid-base reaction for each theory, identifying them clearly. Also state the bond type formed in an Lewis acid-base reaction.


Please use the VSEPR theory to predict the shape of NH3 and the approximate bond angles


How can we determine the molecular and electron geometry of H2O?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences