Explain the 3 pieces of evidence that disprove Kekule's model of benzene.

Kekulé's model of benzene is that it has 3 double bonds, in a ring of 6 carbons.
One - Benzene isn't very reactive, so if Kekulé's model were to be correct, there would be 3 double bonds in benzene, and so it would react with bromine and decolourise it. It also doesn't do electrophilic addition.Two - The bond lengths in benzene are all the same length. If Kekulé's model was correct, there would be 2 different bond lengths, corresponding to the double bonds and the single bonds in the ring. The actual bond length is between the single and double bond length of carbon.Three - the hydrogenation enthalpy of benzene is expected to be three times that of cyclohexene, if it were Kekulé's model. However, it is smaller, and less energy is produced than expected, meaning that the actual model of benzene is a lot more stable than Kekulé's model.
The correct model for benzene is the delocalised model.

EW
Answered by Ellie W. Chemistry tutor

33733 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

The reversible reaction of sulfur dioxide and oxygen to form sulfur trioxide is shown below. 2SO2(g) + O2(g) 2SO3(g) An equilibrium mixture contains 2.4mol SO2, 1.2mol O2 and 0.4mol SO3. The total pressure is 250atm. What is the p(SO3)?


Briefly describe the concept of electronegativity and explain why CCl4 is a non-polar molecule


What evidences are used to prove that Benzene's kekule model is incorrect and that Benzene has a delocalised Pi structure.


Regarding the first ionisation energies, why do the values shown on the graph go down from magnesium to aluminium and then rise again from aluminium to silicon


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning