What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?

This is a minimisation problem, but it's slightly tricky to see what it is we're minimising. Seeing as it's a that's varying, we are going to have to differentiate with respect to a at some point. We're going to need to find the value of the integral depending on a - this is what we're trying to get the smallest value of. As a first step, we can expand the bracket and make it easier to integrate. This gives us the expression (x2 -xa + a2) inside the integral. Getting the anti-derivatives of this, we need to evaluate [1/3 x3 -x2a +xa] on the interval 0 to 1. Since all of the terms have an x in them, they will be 0 when x is 0, so we just have to substitute x =1. This will give us our value as a function of a, what we were trying to find! We can write f(a) = 1/3 - a - a2. Now to find the minimum, we differentiate with respect to a and set to 0. This gives 2a - 1 = 0, and we find a = 1/2. Our value is given by putting 1/2 into our function f(1/2)= 1/3 -(1/2) + (1/2)2 = 1/12, our answer! To check that is actually a minimum, we can see that the second derivative of f(a) is 2, which is always positive.

RT
Answered by Ryan T. Maths tutor

11215 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: x+y =2; x^2 + 2y = 12


What is Mathematical Induction?


(GCSE) A rectangle has the following characteristics: its length is (2x + 5), its width is (3x - 2). The perimeter of the rectangle is 46 cm. What is the value of x?


Evaluate the integral (write on whiteboard, too complicated to write here)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning