Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)

Because there are two functions that are enclosed in brackets, you should realise that you need to differentiate by parts. You can expand out and differentiate through, but because of the x^1/2 it can get quite complicated and messy. Step 1. define f(x) and g(x)h(x)=3+x^2 g(x)=x^1/2-7xNow differentiate both of those separatelyh'(x)=2xg'(x)=1/2x^-1/2x-7It is worthwhile writing the formulaf'(x)=h'(x)g(x)+h(x)g'(x)substitute into the formulatef'(x)=2x(x^1/2-7x)+(3+x^2)(1/2x^-1/2-7)

AS
Answered by Amrit S. Maths tutor

3753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass 0.25 kg is moving with velocity (3i + 7j) m s–1, when it receives the impulse (5i – 3j) N s. Find the speed of the particle immediately after the impulse.


Find the perpendicular bisector passing through the stationary point of the curve y=x^2+2x-7.


Find the integral of [ 2x^4 - (4/sqrt(x) ) + 3 ], giving each term in its simplest form


Solve the equation 2cos2(x) + 3sin(x) = 3, where 0<x<=π


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning