Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)

Because there are two functions that are enclosed in brackets, you should realise that you need to differentiate by parts. You can expand out and differentiate through, but because of the x^1/2 it can get quite complicated and messy. Step 1. define f(x) and g(x)h(x)=3+x^2 g(x)=x^1/2-7xNow differentiate both of those separatelyh'(x)=2xg'(x)=1/2x^-1/2x-7It is worthwhile writing the formulaf'(x)=h'(x)g(x)+h(x)g'(x)substitute into the formulatef'(x)=2x(x^1/2-7x)+(3+x^2)(1/2x^-1/2-7)

AS
Answered by Amrit S. Maths tutor

3571 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


What is integration?


Solve the differential equation: dy/dx = 6x^2 + 4x + 9


Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning