Answers>Maths>IB>Article

f(x)=(2x+1)^0.5 for x >-0.5. Find f(12) and f'(12)

f(12)=((212)+1)^0.5=25^0.5=5 (simply substitute 12 into the original function)To find f'(12) we need to first find the derivative of the function and then we can substitute 12 in like we did before.f'(x)=0.5(2x+1)^-0.5*(2)=(2x+1)^-0.5=1/((2x+1)^0.5)f'(12)=1/(2(12)+1)^0.5=1/25^0.5=1/5

Answered by Daniel R. Maths tutor

1192 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What method of series convergence test is the correct test?


Take the square root of 2i


Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.


The quadratic equation x^2 - 2kx + (k - 1) = 0 has roots α and β such that α^2 + β^2 = 4. Without solving the equation, find the possible values of the real number k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences