Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.

This exercise is asking to prove the existance of the square root of 2. So let's consider the function f(x) = x^2. Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity). Using the Intermidiate Value Theorem, it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3. Therefore, 

f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3] and taking N=2, we can therefore guarantee the existance of a number c such that 0<c<2 and c^2 = 2. 

Answered by Dilyana K. Maths tutor

7220 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I know which sides are the Adjacent, Opposite and Hypotenuse for trigonometry?


Solve the simultaneous equations 5x + y = 21 and x- 3y = 9


How do you expand brackets in a quadratic equation?


Find the length of a side of the triangle (Pythagoras' Theorem) Two sides are of length 3cm and 4cm, find the length of the Hypotenuse.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences