Solve the simultaneous equation: 3x+y =-4 and 3x-4y=6

The first step would be to rearrange the first equation to make y the subject:
3x+y=-4 ----> y=-4-3x
Next we want to substitute this value of y into the second equation
3x-4y=6 -----> 3x-4(-3x-4)=6
Next we should multiply out the brackets and rearrange.
3x+12x+16=6 ---> -15x+16=6 ----> 15x=-10
Now divide both sides by the multiplier (15) to find the value of x
x=-10/15 ----> x=-2/3
Substitute the value of x into the equation we originally rearranged to find y
y=-4-3x ------> y=-4-3(-2/3) -----> y=-4+2 ----> y=-2
To make sure the values you have are correct, substitute the values into the second equation to ensure the answer is 6.
3x-4y=6 ----> 3(-2/3)-4(-2)=6 ----> -2+8=6 ----> 6=6
Hence x=-2/3 and y=-2

Answered by Samuel P. Maths tutor

8704 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand (x+3)(x+4)


(2x+3)/(x-4) - (2x-8)/(2x+1) = 1 Solve for x


Express 216 as a product of its prime factors.


Harry mixes white paint and blue paint in the ratio 2:5. He makes a total of 21 litres of paint. How much more blue paint does he need to add to the mixture so that the ratio of white paint to blue paint becomes 1:4?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences