The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series

xn = ar(n-1)(1) x2 = 750 = ar1(2) x5 = -6 = ar4divide second equation by first-6/750 = r3r3 = -0.008r= -0.2Insert into first equation.750 = a * -0.2a = -3750Sum to infinite series = a(1/(1-r))(insert known variables)Sum to infinite series = -3750 * 1/1.2= -3125

Answered by Henry P. Maths tutor

5240 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


Use implicit differentiation to find the derivative of 2yx^2, with respect to x.


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences