A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.

dx/dt = 3(t-1)2dy/dt = 3 + 16t-3dy/dx=(dy/dt)(dt/dx) dy/dx = 3 + 16t-3 / 3(t-1)2
At t=2 dy/dx= (3 + 16/8) / 3 = 5/3 Gradient of the normal = -3/5with t=2 y-4=0x-1=0 y=mx + c y - 4 = -3/5(x-1) 3x +5y -23 = 0

Answered by Jasmin H. Maths tutor

3254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


How do you differentiate 2 to the power x?


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences