A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.

Firstly we can use the difference rule to split f'(x) into three components which we can consider separately. Then using the knowledge that the integral of x^n is 1/(n+1)*x^(n+1) we get the expression for f(x) as x^3 - 2x^(3/2) - 7x + C where C is an unknown constant.We find C by using the other information the question gives us- that when x=4, y =22. Plugging this into f(x) gives us the equation 22 = 20 +C, so C = 2. The final expression is therefore f(x) = x^3 - 2x^(3/2) - 7x + 2.

AS
Answered by Abbey S. Maths tutor

3918 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate x^2 + y^3 + xy respect to x


What is the gradient of the quadratic function y=3x²?


Find the coordinates of the stationary point of y = x^2 + x - 2


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning