Solve the simultaneous equations to find x and y: 2x - 2y = 20, x + 4y = 5

Equation1: 2x - 2y = 20, equation 2: x + 4y = 5First method (subtraction):Multiply equation1 by 2: 4x - 4y = 40Add the two equations together canceling out the y unknowns: 4x + x = 40 + 5Solve for x: 5x = 45, therefore x = 9Plug the value for x into equation2 and solve for y: 9 + 4y = 5, therefore y = -1Second method (substitution):Arrange equation2 to have x on one side and everything else on the other by subtracting 4y from both sides: x = 5 - 4ySubstitute this equation for x into equation1 and solve for y: 2(5 - 4y) - 2y = 20, therefore 10 - 10y = 20, therefore -10y = 10, therefore y = -1Plug the value of Y into equation2 and solve for x: x - 4 = 5, therefore x = 9

JS
Answered by John S. Maths tutor

5122 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 5(x-6) < 20


Anne picks a 4-digit number. The first digit is not zero. The 4-digit number is a multiple of 5. How many different 4-digit numbers could she pick?


Factorise fully 6xyz + 24x^2yz + 18xy^3z^2


How to solve a quadratic by factorisation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning