A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.

The gradient of a curve at a point is given by dy/dxDifferentiate the equationplug in the valuesdy/dx = 2ax + 3x = -1, dy/dx = -5-5 = 2a*-1 + 38 = 2aa = 4

SE
Answered by Salma E. Further Mathematics tutor

5681 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


Can you explain induction and go through an example?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning