A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.

The gradient of a curve at a point is given by dy/dxDifferentiate the equationplug in the valuesdy/dx = 2ax + 3x = -1, dy/dx = -5-5 = 2a*-1 + 38 = 2aa = 4

SE
Answered by Salma E. Further Mathematics tutor

5683 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


How would I solve the following equation d^2x/dt^2 + 5dx/dt + 6x = 0


Finding the derivative of a polynomial.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning