Find and describe the stationary points of the curve y = x^2 + 2x - 8

Stationary points occur when the derivative is = 0Derivative: 2x + 2 = 0, so a stationary point occurs when x = -1y = 1 + 2 - 8 = -5Second derivative = 2Therefore, the stationary point (-1,2) is a minimum

MN
Answered by Martha N. Further Mathematics tutor

1856 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of the stationary points on the curve y=x^5 -15x^3


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences