Find and describe the stationary points of the curve y = x^2 + 2x - 8

Stationary points occur when the derivative is = 0Derivative: 2x + 2 = 0, so a stationary point occurs when x = -1y = 1 + 2 - 8 = -5Second derivative = 2Therefore, the stationary point (-1,2) is a minimum

Related Further Mathematics GCSE answers

All answers ▸

The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


If y=x^3+9x, find gradient of the tangent at (2,1).


Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences