Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.

After sketching a diagram of the curve and the solid for clarity, we see that we need to use the formula V = π∫ y2 dx (with upper and lower bounds of 3π/4 and π/4 respectively) to calculate the volume of the solid formed by the revolution. If we replace y with its expression in terms of x, we obtain integral π∫ (cos(x/2)2 dx so V = π∫ cos2(x/2) dx. Using the double angle formula (cos(2θ) = 2cos2(θ)-1), we get cos2(θ) = cos(2θ)/2+1/2 by rearranging. And we can set θ = x/2 to give us cos2(x/2) = cos(x)/2+1/2, which can be substituted into our integral and be evaluated as follows:V = π∫ (cos(x)/2+1/2) dx = π[sin(x)/2+x/2] (with same bounds as earlier)= π[(sin(3π/4)/2+3π/8)-(sin(π/4)/2+π/8) (after evaluating at boundaries)= π(√2/4+3π/8-√2/4-π/8) = π(π/4) = π2/4Which is in the required form, so a=4.

Answered by Nicholas C. Maths tutor

2832 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve at the point (1, -1 ): 10yx^2 + 6x - 2y + 3 = x^3


Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


How do you derive the quadratic formula?


Solve for -pi < x < pi: tanx = 4cotx + 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences