Integrate ln(x)

Our A-level knowledge does not give us any identities to be able to integrate this from memory. But what we do have from memory is that the derivative of ln(x) is 1/x. Why would this help us? Let's take a look at integration by parts.∫uv' dx = uv - ∫ vu' dx where the "dash" just represents the derivative i.e u' is du/dx and v' is dv/dx.We have to assign values to u and v'. When we multiply anything by 1 we get the same value as we started with so we will use this property to help us answer the question. Let's set u = ln(x) and v' = 1 u = ln(x) u'= ? v= ? v'= 1To obtain v, we must integrate v' which gives us a value of x. Similarly, we must differentiate u to obtain u' which, from memory, is 1/x.u = ln(x) u'= 1/x v= x v'= 1Substituting this into our equation about we get: ∫ln(x) dx = xln(x) - ∫x/x dx = xln(x) - ∫1 dxTherefore our final answer is: xln(x) -x + c Note: Don't forget the constant in indefinite integration!

Answered by James E. Maths tutor

2558 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know if I am using the right particular integral when solving a differential equation


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


Find the roots of this equation: y=(8-x)lnx


Find the set of values for which x^2 - 7x - 18 >0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences