Integrate ln(x)

Our A-level knowledge does not give us any identities to be able to integrate this from memory. But what we do have from memory is that the derivative of ln(x) is 1/x. Why would this help us? Let's take a look at integration by parts.∫uv' dx = uv - ∫ vu' dx where the "dash" just represents the derivative i.e u' is du/dx and v' is dv/dx.We have to assign values to u and v'. When we multiply anything by 1 we get the same value as we started with so we will use this property to help us answer the question. Let's set u = ln(x) and v' = 1 u = ln(x) u'= ? v= ? v'= 1To obtain v, we must integrate v' which gives us a value of x. Similarly, we must differentiate u to obtain u' which, from memory, is 1/x.u = ln(x) u'= 1/x v= x v'= 1Substituting this into our equation about we get: ∫ln(x) dx = xln(x) - ∫x/x dx = xln(x) - ∫1 dxTherefore our final answer is: xln(x) -x + c Note: Don't forget the constant in indefinite integration!

Answered by James E. Maths tutor

2683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


How to sum an arithmetic progression?


The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


How do I integrate by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences