Find the inverse of y = (5x-4) / (2x+3)

the aim of finsing the inverse is making x the subject. To start we need to multiply both sides by: (2x+3), giving us:

y(2x+3) = 5x-4

now we need to expand the brackets:

2xy +3y = 5x-4

now gather all the x components on the same side:

2xy - 5x = -4-3y

now factorise the left hand side:

x(2y-5) = -4-3y

now make x the subject, giving us:

x =(-4-3y) / (2y-5)

therefore, the inverse is written in terms of x, which gives us:

f-1(x) = (-4-3y) / (2y-5)

Answered by Xuanyi A. Maths tutor

5124 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I improve my score?


Find the derivative of f(x)=x^2*e^x+x


If y=(a^(Sinx)) where a and k are given constants, find dy/dx in terms of a and x


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences